domingo, 1 de fevereiro de 2009

El principio de incertidumbre y la dualidad onda-partícula en el experimento de las dos ranuras

Ya vimos como el spin de las partículas y el comportamiento denominado efecto túnel, disipan la noción de que las partículas subatómicas son objetos comunes en el sentido que los entendemos en nuestra vida diaria. Veremos aquí nuevas pruebas al respecto. 

Las partículas subatómicas, poseen una naturaleza similar a la de las ondas, lo cual significa que no es posible a veces hablar de ellas como si existieran en alguna localización única y precisa. Este hecho fue expuesto por Heisenberg, uno de los fundadores de la teoría cuántica, en su famoso principio de incertidumbre. Este principio se ve mas claramente cuando se refiere específicamente a la idea de la trayectoria, es decir la combinación de la posición y la velocidad. Heisenberg señaló que mediante un procedimiento experimental se puede determinar la velocidad o el momento (en su acepción física) de la partícula, y mediante otro procedimiento, la posición; pero nunca simultáneamente ambas mediciones. Como consecuencia de este principio, podemos saber por ejemplo que en cierto instante un electrón partió de una fuente, y podemos también saber que muy poco después incide en una placa fotográfica dejando una marca. Pero lo que nunca podemos saber es como llegó desde la fuente a la placa, por eso carece de sentido decir que la partícula siguió una trayectoria o recorrido hecho de puntos continuamente conectados entre sí en el espacio. El principio de incertidumbre no significa que no podamos medir la posición y la velocidad por no contar con instrumentos de una precisión adecuada, es decir no significa una incapacidad de medición externa; sino que es una cualidad intrínseca del mundo subatómico. Un electrón no tiene una posición y una velocidad definida y precisa en el mismo momento. Si el electrón fuera consciente, no podría conocer en cada instante y simultáneamente donde está y hacia donde se dirige. Matemáticamente esto se expresa como Dx.Dp>h/2p; lo que significa que el error en la medición de la posición “x” multiplicado por el error en la medición del momento “p” siempre deberá ser mayor a una constante “h/2p”, es decir que por mas que minimicemos uno de los errores, es decir seamos más precisos en dicha medición, necesariamente aumentaremos el error en la otra medición para mantener el valor del producto limitado a la inecuación anterior. El hecho de que una partícula parezca poseer cierto grado de incertidumbre acerca del lugar donde se encuentra es solo parte del problema. La partícula parecería estar insegura de qué es ella misma (una crisis de identidad diría yo en el plano psicológico, salvo que las partículas no tienen psicología ¿o si?), porque en ciertas ocasiones presenta las características de una partícula y en otras las características de una onda. Cómo explica la física cuántica esa aparente paradoja nos lleva a un debate que ha durado los últimos 300 años comenzando con Newton y terminando en París con el experimento de Alain Aspect, algo del mismo vimos en el punto anterior. Agreguemos ahora algo más. En 1690 Huygens propuso que la luz se transmite en ondas esféricas que se propagan a partir de una fuente luminosa. Newton rechazó la teoría ondulatoria y en 1704 propuso que la luz estaba compuesta por partículas diminutas. Un siglo después otro físico, Thomas Young, inclinó la balanza a favor de Huygens probando que la luz poseía ciertas propiedades que sólo era posible asociar con una onda. Esto era así debido a que la luz en un famoso experimento conocido como el experimento de las dos ranuras, producía interferencia, y para los físicos, cuando dos fenómenos interfieren entre sí se dice que se propagan en el espacio como una onda. ¿Cómo fue esto?, Young colocó una pequeña fuente luminosa que proyectaba su luz a través de dos delgadas ranuras practicadas en un trozo de material opaco. Esta luz luego de pasar por las ranuras, se proyectaba en una pantalla. Young comprobó que en lugar de haber dos franjas de luz en la pantalla, como debería ocurrir si la luz fueran partículas que viajan en línea recta, había una serie de franjas brillantes y oscuras de diferentes intensidades. Su conclusión fue que este era un patrón de interferencia que solo se explica por el supuesto de que la luz que pasa por las ranuras tiene características ondulatorias. Esta versión se aceptó y duró otros cien años, hasta que aparecieron dos fenómenos que no se podían explicar con los conceptos de la física clásica, el primero consistió en el problema de la radiación del cuerpo negro, fenómeno estudiado por Planck, mientras que el segundo era el llamado efecto fotoeléctrico, fenómeno estudiado por Einstein, donde este propone nuevamente el concepto de la luz como compuesta por partículas. Mas delante otro físico, Louis de Broglie planteó el enigma siguiente: si así como las ondas podían comportarse como partículas (la luz), ¿podría ser que las partículas (los electrones) se comportaran como ondas?. Hizo un bosquejo matemático de este fenómeno que más tarde fue comprobado experimentalmente. Se comprobó entonces que el universo estaba compuesto por entidades cuánticas que a veces podían comportarse como ondas y a veces como partículas. Esto era realmente asombroso al menos para los físicos. Uno de ellos, Heisenberg, solía preguntarse después de discutir largamente con Bohr: 

  

“¿Puede la naturaleza ser tan absurda como nos parece en estos experimentos atómicos?”. 

  

Para resolver la aparente paradoja de la dualidad onda / partícula del universo, algunos físicos (nótese el ingenio y la audacia para proponer algo tirado de los pelos) sugirieron que tal vez no deba pensarse que la materia está formada por ondas de materia, sino más exactamente, como ondas de probabilidad (ver el capítulo de ondas). Esto de las ondas cuánticas como ondas de probabilidad es realmente un concepto tortuoso y que el entendimiento a mi entender sólo lo acepta por acostumbramiento cuando ha escuchado y leído mucho al respecto. Este concepto significa que lo que pasa a través de las ranuras en el experimento de las dos ranuras es una onda de probabilidades. La ecuación que describe como una onda cuántica se mueve- la ecuación de Schrödinger- no describe una onda material, sino que lo que realmente describe matemáticamente es la probabilidad de encontrar el fotón o el electrón (la entidad cuántica) en un lugar definido. Sobre este cuadro pintado a partir de los estudios del físico Max Born, cualquiera de estas entidades cuánticas mientras no sean observadas, literalmente no existen con la forma o identidad de una partícula. Hay una cierta probabilidad de encontrarla aquí u otra probabilidad de encontrarla mas allá, y en principio podría estar en cualquier parte del universo, por supuesto con diferente probabilidad de que esto así ocurra. Algunas ubicaciones son mucho más probables que otras de allí como veremos que cuando marcan la placa fotográfica, existirán líneas de mayor impacto, lo que indica mayor probabilidad y otras de menor impacto o probabilidad. Esta característica permite explicarnos el efecto túnel; una “partícula” parece pasar a través de una barrera de potencial simplemente porqué su función de onda le asigna una cierta probabilidad de que exista del otro lado de dicha barrera, por eso se da esa percepción de que la “partícula” se desvanece desde el lado de la barrera donde fue lanzada y aparece del otro lado de la barrera “como si” hubiera un túnel en la misma. 

Esto que llegó a ser una de las interpretaciones más aceptables de la física cuántica, trajo consigo consecuencias perturbadoras para nuestra comprensión de la realidad. 

Por ejemplo, en el experimento de la doble ranura, las bandas de interferencia producidas por los fotones al pasar por las ranuras revelan claramente la naturaleza ondulatoria de la luz. Sin embargo, si la pantalla opaca contra la cual se proyectan los haces de luz, es sustituida por una placa fotográfica, cada fotón que incide en ella deja sólo un punto donde hizo impacto, lo cual revela que el fotón posee una índole que lo asemeja a una partícula. ¿Qué pasaría si pudiéramos dejar pasar de a un fotón por vez?. Bien esto se logró y cada fotón dejaba una marca en la placa fotográfica mostrando su identidad como partículas, pero a medida que van pasando mas y mas fotones las marcas de los impactos en la placa fotográfica, dibujan el patrón de interferencia de las ondas, es decir cada fotón que se dirige hacia la doble ranura elige un camino diferente. Si de repente se tapa una ranura, entonces el patrón de interferencia deja de producirse. ¿Cómo sabe éste o aquél fotón cuando la segunda ranura está descubierta y cuando no? Si cada fotón pasa por una sola ranura, ¿cómo conoce la situación en que se encuentra la otra ranura y por lo tanto el tipo de figura que debe construirse en la placa fotográfica? La respuesta que da la física cuántica es asombrosa, profunda y rara diría yo. Dice que cada fotón, de alguna manera, pasa por ambas ranuras al mismo tiempo y en consecuencia es portador de alguna suerte de conocimiento de la situación en que están ambas ranuras en el momento en que incide en la placa fotográfica. Es decir cuando el fotón está en tránsito no existe como un único objeto. Durante esa fase parece capaz de manifestarse como varias contrafiguras probabilísticas de sí mismo y explora todos los senderos que se le abren simultáneamente y que le están permitidos. Sólo al llegar a la placa vuelve a su estado de partícula solitaria. Este experimento resulta similar con electrones y otras entidades cuánticas que tienen la facultad de existir simultáneamente en varios estados probables distintos. Esta es la razón por la cual los físicos hablan de las fases ondulatorias de esas partículas no como ondas materiales sino como ondas cuánticas de probabilidad. Esta capacidad de las partículas subatómicas para existir en mas de un lugar al mismo tiempo plantea algunas cuestiones profundas. Una involucra una controversia respecto del observador, ¿cuál es el rol que desempeña el observador humano en todo esto? En virtud del principio de incertidumbre por el cual no tiene sentido hablar de la trayectoria de una partícula en el espacio, y la capacidad de la misma de estar en mas de un sitio al mismo tiempo, parece carente de sentido pensar que dicha partícula sea algo real si no existe un observador humano. Antes de que el fotón del experimento haya dejado su marca en la placa fotográfica (cuando hacemos la observación), lo mas que podemos decir de él, es que se asemeja a un fantasma y parece existir al mismo tiempo en todos sus trayectos posibles. Otra pregunta es la siguiente: si los bloques de construcción subatómicos de los objetos materiales no poseen las características de los objetos materiales, ¿qué grado de realidad tiene el mundo en qué vivimos?, ¿Mediante qué extraños procedimientos permite la naturaleza que la aparente solidez del mundo se desintegre en la fantasmal y esquizofrénica multiplicidad de probabilidades que constituyen el mundo subatómico? 

Este experimento de la doble ranura que permitió deducir la doble identidad de determinadas entidades cuánticas, no solo fue realizado con fotones, sino también con electrones y más tarde con átomos que hasta ahora siempre fueron reconocidos en su acepción como partículas fundamentales a partir de las cuales todo nuestro mundo real está construido. Ahora bien si estas se comportan como ondas-partículas, ¿dónde se encuentra la línea divisoria entre el mundo de la física cuántica y el mundo de la física clásica?, ¿Dónde los objetos pierden su condición de ondas para comportarse como nuestro sentido común nos indica como partículas? .

Nenhum comentário:

Postar um comentário