domingo, 1 de fevereiro de 2009

Efecto fotoeléctrico y los fotones

El significado de la solución muy ingeniosa que aportó Planck, era controvertido. Planck mismo no quería creer que la radiación electromagnética estuviera restringida de esta manera que el proponía, y esperaba poder encontrar algo dentro de la física clásica que no hubiera sido analizado a fondo, que le permitiera explicar porqué las ondas debían transportar energía solo en cantidades discretas, múltiplos de un mínimo. A Planck no le gustaban las implicancias de lo que él mismo había lanzado, poniéndolo en perspectiva de hoy, Planck no consideraba que hubiera abierto la puerta a una nueva física, totalmente revolucionaria. El nunca le atribuyó a estos pequeños paquetes de energía una significación que fuera mas allá de un artificio matemático, es decir para él los cuantos no tenían una significación física genuina. 

Desde un punto de vista filosófico los físicos podían discutir eternamente acerca de los fotones, ¿eran reales? o ¿eran construcciones matemáticas que escondían algún principio físico desconocido?. A medida que el tiempo transcurría, comenzó a ser aparente que los resultados de ciertos experimentos, eran mas fácilmente entendidos si se partía de la premisa que los fotones eran una entidad física genuina, es decir reales. El primero de estos fenómenos es el denominado efecto fotoeléctrico. Ciertos materiales emiten electrones cuando son iluminados por una luz. La razón por la que los metales conducen electricidad, es que algunos de los electrones más superficiales del elemento químico componente están libres de moverse a través de todo el material conductor, saltando desde un átomo hacia otro del metal conductor. Es un hecho ya establecido que los electrones en los llamados metales – que son conductores- no están firmemente ligados como lo están en otras substancias. Por lo tanto si arrojamos energía de una forma u otra, a un metal podríamos golpear electrones y sacarlos, pero existen un par de detalles del efecto fotoeléctrico que elude explicaciones sencillas. Los físicos experimentales habían descubierto que para poder liberar electrones de la superficie de un metal específico, la luz que le “llueve” sobre la misma debía tener una frecuencia mínima, la cual dependía del metal en cuestión. Esto significa que para liberar electrones del sodio se necesita luz verde, mientras que para liberar electrones del cobre o el aluminio se necesita una luz con mayor energía como la ultravioleta, que es de mayor frecuencia. No solo esto, se detectó también que una vez que comenzaba la liberación de electrones, al aumentar la intensidad de la luz, se incrementa la cantidad de electrones liberados pero no  

La energía de los mismos; mientras que si se aumenta la frecuencia de la luz, pero no su intensidad, conque se irradia el metal, se continúan liberando la misma cantidad de electrones en el tiempo pero con una energía en cada uno de ellos superior a la de la situación anterior. Estos hechos eran difíciles de entender usando la teoría ondulatoria de la luz, en la cual la energía que porta una onda es un producto de su frecuencia y su intensidad: así radiaciones de baja frecuencia y alta intensidad serían similares en términos de energía entregada a la superficie del metal en el efecto fotoeléctrico que si lo irradiáramos con radiación de alta frecuencia y baja intensidad. Es decir no habría una explicación razonable desde el punto de vista de la teoría ondulatoria, porqué la frecuencia y la intensidad de la luz irradiada muestra efectos tan diferentes a los esperados. 

Pero fue Einstein, aun siendo joven, que explicó el efecto fotoeléctrico en forma muy sencilla, considerando a la luz en su comportamiento corpuscular. Imaginemos ahora que un fotón – la luz como una partícula- golpea en el metal y tiene que sacar a un electrón. Si este está unido a la estructura del metal con cierta fuerza atractiva – como un imán- se necesitará una mínima cantidad de energía para despegarlo. Dado que los fotones llevan energía en forma proporcional a su frecuencia- E= h*n -, la frecuencia de este fotón deberá tener un valor mínimo para que así la energía que porta sea superior a la que está uniendo al electrón a la superficie del metal. Dos fotones de menor frecuencia que la requerida podrían liberar a un electrón de su prisión siempre y cuando los dos chocaran a este uno atrás del otro, cosa que es bastante poco probable. Esto explica entonces porqué la luz tiene que tener una frecuencia determinada para lograr sacar electrones de los metales. Dado que los átomos que componen los diferentes metales tienen diferentes propiedades, significa que la energía de unión de los electrones externos será una característica propia de dicho elemento, por eso vimos que los resultados experimentales muestran que se necesita diferente tipo de luz (diferente frecuencia) para expulsar electrones de diferentes metales. 

Elevando la intensidad del rayo de luz con el que estamos bombardeando el metal, significa que estamos enviando mayor cantidad de fotones. Cada uno de los fotones, si son de la frecuencia adecuada, estarán haciendo saltar electrones a una velocidad determinada dada por la energía que le transmiten; al ser mas los fotones, lo que mediremos será mayor cantidad de electrones expulsados pero no una variación de la energía de cada uno de ellos. Mientras que si elevamos la frecuencia pero mantenemos la intensidad, dado que la cantidad de fotones con que bombardeamos no cambia, los electrones expulsados tampoco cambiarán, lo que sí notaremos es que los electrones que salen tendrán mayor velocidad dado que se les ha transmitido mayor energía. 

La teoría corpuscular de la luz, la de los fotones como partículas reales de energía proporcional a la frecuencia, explica muy simplemente hechos experimentales donde la teoría ondulatoria de la luz falla. Einstein recibió en 1921 el premio Nobel por este trabajo.

Nenhum comentário:

Postar um comentário